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The Effect of Single-Nucleotide Polymorphism Marker Selection
on Patterns of Haplotype Blocks and Haplotype Frequency Estimates
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The definition of haplotype blocks of single-nucleotide polymorphisms (SNPs) has been proposed so that the
haplotypes can be used as markers in association studies and to efficiently describe human genetic variation. The
International Haplotype Map (HapMap) project to construct a comprehensive catalog of haplotypic variation in
humans is underway. However, a number of factors have already been shown to influence the definition of blocks,
including the population studied and the sample SNP density. Here, we examine the effect that marker selection
has on the definition of blocks and the pattern of haplotypes by using comparable but complementary SNP sets
and a number of block definition methods in various genomic regions and populations that were provided by the
Encyclopedia of DNA Elements (ENCODE) project. We find that the chosen SNP set has a profound effect on the
block-covered sequence and block borders, even at high marker densities. Our results question the very concept
of discrete haplotype blocks and the possibility of generalizing block findings from the HapMap project. We
comparatively apply the block-free tagging-SNP approach and discuss both the haplotype approach and the tagging-
SNP approach as means to efficiently catalog genetic variation.

Introduction

Work done in recent years has suggested the existence
of distinguished chromosomal areas, or haplotype
blocks, in the human genome that are, to some extent,
independent of their surrounding areas with regard to
linkage disequilibrium (LD) or recombination (Daly et
al. 2001; Patil et al. 2001; Subrahmanyan et al. 2001;
Dawson et al. 2002; Gabriel et al. 2002). In his com-
mentary, Goldstein (2001) painted the most optimistic
picture of a genome that is composed of discrete blocks
that are separated by hotspots of recombination. The
use of haplotypes of SNP markers at these areas as mul-
tiallelic markers with increased heterozygosity in asso-
ciation studies has been proposed (Morris and Kaplan
2002; Zhang et al. 2002a; Knapp and Becker 2003).
Johnson et al. (2001) suggested distinguishing between
block haplotypes by a minimal set of haplotype-tagging
SNPs (htSNPs), which would then efficiently describe the
variation in the human genome by allowing for geno-
typing of only a subset of SNP marker loci. The use-
fulness of htSNPs in disease-association studies has re-
cently been questioned (Crawford et al. 2004; Zhai et
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al. 2004). LD in a chromosomal region is shaped by a
complex interplay of factors—including mutation and
recombination rates, population and migration histories,
selection, and also chance—many of which are un-
known. Block-like chromosomal patterns can have a
number of sources, which reflects the many factors that
influence LD, and they also might occur stochastically
(Subrahmanyan et al. 2001; Wang et al. 2002). The In-
ternational Haplotype Map (HapMap) project is cur-
rently genotyping huge numbers of SNP marker loci in
samples of individuals of European, Asian, and African
descent to better understand human haplotype structure
(International HapMap Consortium 2003). By spring
2005, the project has already accomplished a remarkable
average marker spacing of 5 kb genomewide. For se-
lected chromosomal regions, this resolution has been
increased even more within the Encyclopedia of DNA
Elements (ENCODE) project (ENCODE Project Con-
sortium 2004).

Several publications have shown that there are dif-
ferences between populations in LD patterns and block
patterns (Goddard et al. 2000; Kidd et al. 2000; Reich
et al. 2001; Gabriel et al. 2002; Hinds et al. 2005;
Sawyer et al. 2005). Phillips et al. (2003) demonstrated
that marker ascertainment and spacing can explain ob-
served block lengths, and variability in recombination
rates, bottlenecks, and selection are not required to this
end. The crucial influence of the sample SNP den-
sity on the length of method-defined blocks has been
demonstrated (Ke et al. 2004). Also, Sun et al. (2004)
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Table 1

ENCODE Regions under Investigation

REGION (POSITION)
LENGTH

(Mb)

NO. OF SNPS (DISTANCEa) IN POPULATION

CEU HCB JPT YRI

ENm013 (7q21.13) 1.11 421 (.66, 1.19 � .38) 305 (1.09, 1.62 � .38) 262 (1.32, 1.89 � .40) 338 (.88, 1.46 � .42)
ENm014 (7q31.33) 1.16 555 (.48, .90 � .30) 373 (.71, 1.34 � .44) 290 (.85, 1.71 � .61) 419 (.61, 1.19 � .41)
ENr112 (2p16.3) .5 599 (.53, .83 � .22) 543 (.51, .92 � .29) 531 (.51, .94 � .30) 541 (.55, .92 � .26)
ENr113 (4q26) .5 627 (.40, .80 � .28) 525 (.46, .95 � .35) 520 (.48, .96 � .34) 535
ENr131 (2q37.1) .5 649 (.40, .76 � .26) 515 (.53, .95 � .30) 503 (.54, .97 � .31) 510 (.52, .97 � .32)
ENr213 (18q12.1) .5 430 (.66, 1.15 � .34) 345 (.77, 1.44 � .47) 354 (.77, 1.40 � .45) 370 (.77, 1.35 � .43)
ENr232 (9q34.11) .5 359 (.55, 1.39 � .59) 316 (.59, 1.58 � .70) 311 (.59, 1.60 � .72) 319 (.59, 1.56 � .68)
ENr321 (8q24.11) .5 399 (.63, 1.25 � .44) 442 (.61, 1.13 � .36) 413 (.64, 1.21 � .40) 411 (.64, 1.22 � .41)

NOTE.—SNPs were required to have !5% missing alleles in the sample, and both alleles had to have a frequency of at least 0.1,
corresponding to a minimum heterozygosity of 0.18. Differences in SNP numbers between the populations were due to different hetero-
zygosities (in the raw data) and to the subsequent filtering of rare SNPs. The median was used as an additional robust characterization
of the skewed SNP distance distributions. The regions have comparable SNP densities among the four populations, CEU, HCB, JPT, and
YRI.

a Distance values are median, mean � SD (in kb).

pointed to the impact of sample size and marker selec-
tion on the number of haplotype blocks. This effect is
predominantly the result of blocks that fall apart into
subblocks when more SNPs are added to the sample
and of newly detected blocks too small to be resolved
by the previous SNP resolution. Rarely, haplotype
blocks also disappear with increasing SNP density (i.e.,
the “flip-flop” effect). Simultaneously, the overall block-
covered sequence and the number of blocks increase
while the average block length decreases. Thus, detected
block structures are preliminary and dependent on the
sample. However, it is usually suspected (by the authors
of previous publications) that a higher SNP density will
resolve this problem and give a more accurate picture
of the “true” underlying block structure.

Here, we focus on the block-covered sequence as the
part of the genome in which information about the
chromosomal sequence is supposed to be neatly sum-
marizable by information on a few haplotypes in a dis-
tinct genomic region. If haplotype blocks are a sound
concept, they should be detected regardless of the par-
ticular choice of SNPs, at least for high marker densities.
Various block methods are consistent with regard to
block-covered sequence—that is, the part of some ge-
nomic sequence that is included in blocks—when SNPs
are successively added to the sample (unpublished data).
In this case, blocks at a lower density are, to a great
extent, included in blocks at a higher density. But the
block borders are usually not stable, and blocks con-
tinue to fall apart into subblocks with growing SNP
density. For the current study, we were interested in
investigating the effect of different but comparable sets
of SNPs in the same region—that is, the influence of
marker selection—on the block definition and the ob-
served haplotypic pattern.

Data Sets and Methods

Data Sets

We analyzed 32 publicly available high-quality data
sets of eight genomic regions in four populations that
were provided by the ENCODE project, to avoid any
bias resulting from the use of a particular genomic region
or population. We downloaded the genotype data files
as of December 2, 2004 (available at the ENCODE Web
site). The selected samples had comparatively high SNP
densities that were very similar among the populations
(see table 1). The data sets contained genotypic infor-
mation on 30 trios of European American descent from
Utah (CEU), 45 Chinese individuals from Beijing (HCB),
44 unrelated Japanese individuals from Tokyo (JPT), and
30 Yoruban trios from Nigeria (YRI). We required each
SNP to have a minimum heterozygosity of 0.18.

To assess the effect of marker selection on LD and
block patterns in a particular region, we split each data
set in half by allocating the first SNP (in order of physical
location), the third, the fifth, and so on to the first subset
and allocating the second SNP, the fourth, the sixth, and
so on to the second subset. In this way, we generated
two complementary data sets with interdigitated marker
positions that were almost identical with regard to their
average marker distance and the genomic region they
covered.

Block Algorithms and LD Assessment

We employed three different algorithms for the defi-
nition of blocks. Two methods primarily target absent
recombination events in blocks. The four-gamete test
(Hudson and Kaplan 1985; Wang et al. 2002) defines
blocks as areas between consecutive SNPs where one or
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more haplotypes of each marker pair have a frequency
!0.01. The approach by Gabriel et al. (2002) imposes
limits on the CIs of (Lewontin 1964); they must be′D
exceeded by at least 95% of all pairs. We used the im-
plementation of both algorithms in HaploView 3.2 (Bar-
rett et al. 2004). The third algorithm aims for elevated
levels of multilocus LD within blocks. We used sliding
windows of four consecutive SNPs, estimated the hap-
lotype frequencies for these SNPs, and calculated the
normalized entropy difference (NED), � (Nothnagel et
al. 2002), as a measure of multilocus LD. Blocks were
defined as the union of consecutive windows whose �
values exceeded a threshold of 0.5 (Nothnagel 2004).
This algorithm and the succeeding analysis (designated
“NED(4;0.5)”) were implemented in C, Perl, and R (R
Development Core Team 2004).

Haplotype frequencies were estimated using an ex-
pectation-maximization algorithm for trios in which in-
formation on the children is used only to infer the phase
of the parents (Becker and Knapp 2004). We further
normalized � analogously to : if m markers are con-′D
sidered, � reaches its maximum of if exactly(m � 1)/m
two haplotypes are present (Nothnagel 2004). We there-
fore defined , which assumes a value′� p �/[(m � 1)/m]
between 0 (linkage equilibrium) and 1 (highest possible
disequilibrium), and used it to comparatively describe
multilocus LD with different numbers of SNPs.

Assessment of Block Concordance

We wanted to investigate the effect of marker selection
while keeping the marker density and the covered area
comparable. We therefore repeatedly generated pairs of
data subsets with complementary, interdigitated SNP
sets of thinned density. First, a subset of the full SNP set
was randomly selected, with each SNP having a prob-
ability of being selected of 100%, 50%, 20%, and 10%.
Second, the selected SNP set was split by alternating
division into two subsets, as described above. Thus, the
resulting SNP sets contained a SNP from the full set with
a probability of 50%, 25%, 10%, and 5%, respectively
(i.e., the thinning level). We generated 100 replications
for each thinning level, population, and region, except
for the 50% level for which the full SNP set was split
only once.

We assessed the concordance in block definition be-
tween the two subsets as the portion of the total physical
length of chromosomal sequence included in blocks by
at least one subset ( ) that was also included in blocksSunion

by both subsets ( ). The ratioS S /S �intersection intersection union

was averaged over all replications. This measure(0,1)
focuses on block-covered sequence. For an explicit de-
scription of block border similarity, we employed the
measure by Liu et al. (2004), which can assumeSB2

values between 0 and 1. In short, this measure describes
how well a block partition in a particular region is

matched by another, with 1 indicating a perfect match.
It focuses on the block borders and takes only the num-
ber of SNPs within blocks into account, not their phys-
ical distance. It favors longer blocks shared between the
partitions over shorter ones. Since is not symmetric,SB2

we report the average over both directions of projection.

Assessment of Haplotype Concordance

We introduce a new measure for LD, , that measures′f

the correlation in the haplotypic structure between two
subsets of SNPs. To this end, we consider the subsets as
two multiallelic markers and consider the resultant hap-
lotypes as their possible alleles. Again, we use the en-
tropy concept to describe the state of these systems:

( ), where denotes the fre-(i) (i) (i)S p �� p log p i p 1,2 pi k k kk

quency of the kth haplotype in subset i and the sum-
mation is over all occurring haplotypes. The joint oc-
currence of these two markers forms the haplotypes of
the full SNP set—that is, the union of the two subsets—
and the corresponding entropy is . Under independ-SF

ence, would simply equal the entropy sum of theSF

subsets: . On the other hand, the minimumS p S � SI 1 2

value for is . In analogy to �, we normalizeS max (S ,S )F 1 2

the difference between the entropy expected under in-
dependence and the observed entropy by the maximum
possible entropy: . It is easy to prove thatf p (S � S )/SI F I

, with if the haplotype frequenciesf � (0,0.5) f p 1/2
in all three SNP sets are identical. We therefore scale the
measure to the standard interval: . Thus is′ ′f p f/0.5 f

0 if the two SNP subsets are in linkage equilibrium, and
1 if they are in perfect LD.

TagSNP-Based Prediction

For a comparative analysis of LD-based but block-
free concepts for describing genetic variation, we also
applied the tagging approach suggested by Carlson et
al. (2004). This approach targets networks, or bins, of
SNPs that are in high LD. We used the implementation
in HaploView 3.2 (Barrett et al. 2004) that selects the
minimum set of tagging SNPs (tagSNPs) in such a way
that the value with respect to all SNPs in the sample2r
is greater than a specified cutoff for at least one of those
tagSNPs. We used the standard pairwise tagging option
and cutoffs of 0.5, 0.8, and 1.0. We then assessed the
ability of the tagSNPs to predict the SNP alleles in the
complementary set as the portion of all SNPs that have
an value, with respect to at least one of the tagSNPs,2r
that is greater than the tagging threshold.

Results

LD and Block Structure

Figure 1 illustrates the values for all pairs within′FD F
the two complementary SNP subsets in the European
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Figure 1 Pairwise values and standard Gabriel block definition for the pair of complementary SNP subsets (50% level) in the CEU′FDF
sample of the ENm013 region

sample for the ENm013 region and the blocks defined
by the standard Gabriel method. Although the broad
picture of LD was very similar for the two sets, the fine
structure was different, and so was the block structure.
Results for and for other regions and populations were2r
similar and are provided, together with a description of
the distances between SNPs in the subsets and the dis-
tribution of their less frequent alleles, at our Web site
(see authors’ Web site in Web Resources).

Figure 2 graphs the average block-coverage concor-
dance between complementary SNP subsets for all con-
sidered regions, populations, methods, and thinning lev-
els. The strong discrepancies between the block-covered
sequences for sparse resolutions with an average SNP
spacing �15 kb could be expected. However, it is sur-

prising to observe average concordances near or below
75% and often !50% for all methods, populations, and
regions, even for SNP maps with an average spacing �2
kb. More-stringent thresholds for the Gabriel approach
and for the NED approach did not improve these num-
bers (not shown). Although the concordance tended
to increase with growing SNP density, the picture of
block-covered sequence still showed inconsistencies for
SNP resolutions several times higher than the current
HapMap resolution. Discrepancies tended to be greater
in the African samples.

Table 2 reports the similarity in block borders between
the two interdigitated SNP subsets at the 50% thinning
level for the Gabriel algorithm. Results for the four-
gamete test and for NED(4;0.5) were similar (data not



Figure 2 Average concordance in block-covered sequence for three block methods in pairs of complementary SNP subsets. The mean and
SD of the concordance over all replications at the different thinning levels are graphed with respect to the average median distance between
adjacent SNPs in both sets, separately for each region and population. The concordance for the 50% level was calculated only once. All regions,
populations, and methods considered show a similar picture of improved concordances with increasing marker density, but these are usually
!75% and often average !50%. In a few cases, predominantly in the African samples, concordance even decreased with increasing marker
density. The vertical dotted line within each graph marks the current HapMap resolution of ∼5 kb.
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Table 2

Block Border Concordance

REGION

SIMILARITY OF BLOCK BORDERS: (P)SB2

CEU HCB JPT YRI

ENm013 .69 (.008) .70 (.001) .73 (.001) .55 (.502)
ENm014 .85 (!10�4) .75 (!10�4) .69 (!10�4) .66 (!10�4)
ENr112 .68 (!10�4) .60 (.048) .65 (!10�4) .62 (!10�4)
ENr113 .78 (!10�4) .74 (!10�4) .83 (!10�4) .68 (!10�4)
ENr131 .72 (!10�4) .64 (.003) .61 (.021) .62 (.003)
ENr213 .86 (!10�4) .73 (!10�4) .80 (!10�4) .66 (.001)
ENr232 .79 (!10�4) .67 (.001) .65 (.005) .62 (.012)
ENr321 .79 (!10�4) .71 (!10�4) .65 (.008) .61 (.021)

NOTE.—The similarity between block borders defined by the Gabriel
algorithm in the two complementary SNP subsets (50% level) are
shown for the ENCODE regions under investigation. For each region
and population, the similarity between the block partitions was mea-
sured by (see the “Data Sets and Methods” section). Empirical PSB2

values for the nonrandomness of the observed similarity are given in
parentheses.

shown). Although the block borders show similarities
that are, in most cases, significantly different from those
expected by chance, these similarities are comparable to
the observed concordance in block-covered sequence
(fig. 2).

Underlying Haplotype Structure

To examine the underlying haplotypic structure more
closely, we selected four exemplary areas in the CEU
sample for the ENm013 region that extended over 10–
20 kb and contained 13–15 SNPs each. Two areas
showed perfect concordance in block definition, whereas
the other two showed inconsistencies (see gray boxes in
fig. 1). For each area, we estimated the haplotype fre-
quencies in each SNP subset separately and in both sets
jointly (see fig. 3).

Area 1 represents the almost ideal case: both SNP sets
gave an identical block pattern and the same haplotypic
picture, with the minor exception of two SNPs (rs42610
and rs42618) that split the rarest haplotype into a group
of three. This is the picture that we would expect to see
in a haplotype block. Area 2 also showed also an iden-
tical block pattern and four common haplotypes; how-
ever, their frequencies differed substantially. We could
not establish a perfect match between the subset hap-
lotypes as we did for area 1. Depending on the SNP set
we use in area 2, we get different haplotype frequencies
for subsequent analyses.

In area 3, the block patterns and the frequencies of
the common haplotypes differed between the two sub-
sets; although the area was defined as a single block in
one set, there are several interruptions in the other set.
But the haplotype groups—consisting of one common
haplotype and one or more very similar rare haplo-
types—still matched well, with one group being mapped

to two in one case. In area 4, the situation deteriorated
further, with differences in the block pattern and hap-
lotype frequencies and only a partial match between the
haplotype groups in the two SNP subsets.

Multilocus LD decreased in the series of these four
areas. But all areas showed elevated levels of LD—that
is, they were highly structured and far from being ran-
dom combinations of the single-SNP alleles. To quantify
how representative the four exemplary regions are of the
investigated regions, we employed sliding windows of 5
and 10 SNPs, thus representing situations of both nesting
and overlapping SNP sets. We used to assess haplo-′f

typic correlation between the two complementary sub-
sets within these windows and assessed the physical
coverage of each region by windows whose values′f

equaled or exceeded a specified threshold. Table 3 lists
the results for the most stringent threshold, 1.0 (the most
interesting case, when the haplotype frequencies in all
three SNP sets are identical), and for 0.9 as the threshold
separating area 1 from the other three. The portions of
identical haplotype patterns differ considerably between
the regions and populations. Although areas of identical
haplotype patterns in the subsets are not common, ex-
tensive areas show high correlations. The African sam-
ples persistently showed much smaller portions, but
there was no clear trend for the other three populations.
For region ENm013 in the CEU sample, less than one-
sixth of the SNP sequence gave identical haplotype pat-
terns, despite a block concordance 175%. The percent-
age of a region with identical haplotype patterns was
strongly correlated with the average of in the full SNP′�4

set (0.86) across the regions and populations but was
less so with the average value (0.47). This reflects the2r
local LD assessment by .′�4

In summary, our results demonstrate that it is difficult,
if not impossible, to reliably infer the underlying hap-
lotype structure from the block structure. Only for the
highest values of LD is such an inference possible, but,
even then, a consideration of additional SNPs might de-
stroy the well-ordered picture. Depending on the chosen
SNP set, we might get different haplotype block patterns
and different haplotype frequencies, even at high marker
densities.

TagSNP Prediction

Although our analysis demonstrated the fragility of
haplotypes and of haplotype blocks, SNPs are often not
independent, and dependencies between them need to
be considered. One way to discard the rigid concept of
blocks but exploit SNP associations is to consider net-
works of SNPs that leave in-between SNPs aside and do
not claim to be representative of them. Carlson et al.
(2004) recently proposed such an approach to tagSNP
selection for association analysis. We wanted to assess
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Table 3

f Regions for the Four Populations

REGION

PHYSICAL PERCENTAGE OF REGION WITH

(Identical′f p 1
Haplotype Patterns) ′f � .9

CEU HCB JPT YRI CEU HCB JPT YRI

ENm013 14.7 11.4 33.0 3.9 30.5 41.3 49.2 11.5
ENm014 17.7 28.0 16.5 12.0 30.9 52.0 55.0 20.5
ENr112 18.4 20.8 18.2 .2 36.9 44.2 40.6 4.2
ENr113 16.4 35.3 31.9 8.0 41.9 53.9 67.2 22.0
ENr131 13.7 16.5 18.7 3.4 33.7 30.1 32.7 12.1
ENr213 17.2 30.8 25.5 4.7 46.0 54.8 49.1 9.4
ENr232 31.9 7.1 12.6 5.3 53.2 21.9 20.5 10.8
ENr321 20.0 16.1 17.5 6.8 53.1 49.7 43.4 17.0

NOTE.—Portions of the ENCODE regions under investigation with
elevated levels of haplotypic association between the complementary
SNP subsets (50% level) are shown. A five-SNP sliding window was
used along the sequence. Within each window, the SNP set was split
into two interdigitated subsets, and was calculated. Listed is the′f

physical portion of the SNP sequence that is covered by windows with
(i.e., identical haplotype frequency patterns in both comple-′f p 1

mentary subsets and the full set) and . Results for the 10-SNP′f � 0.9
window differed, with few exceptions, by only a few percentage points
for the threshold 1.0 but differed considerably for 0.9 (not shown).
These numbers are therefore only a rough assessment of the covered
sequence. African samples consistently showed a much smaller portion
of identical haplotype patterns than did the other three populations.
Almost all the sequence in all regions and populations showed f� values
�0.5 (not shown).

Figure 3 Haplotype patterns in the complementary SNP subsets (50% level) of the CEU sample in four exemplary areas of the ENm013
region. The graphs detail the haplotypic structure seen in the gray boxes of figure 1. The frequency estimation was used for each SNP subset
separately and both sets together. LD was assessed separately for each SNP set ( ) and between the SNP subsets ( ). The upper two areas had′ ′� f

identical block patterns in the subsets, whereas the lower two differed. Only area 1 met the expectation of a consistent haplotype block, showing
nearly identical patterns of blocks and frequencies and also the highest LD values of the four areas. The haplotype frequency changes in areas
2 and 4 were due to rare entwined haplotypes in the full SNP set.

how well tagSNPs in one subset can predict SNPs in the
complementary set. Since the results for both directions
between the two subsets were highly similar, table 4 lists
the average values of both directions.

A cutoff of 0.5 for yielded successful predictions of2r
usually 190% in the complementary SNP subset, with
the exception of the African samples, which showed
markedly lower percentages. A more stringent threshold
of 0.8 led to an ∼50%–100% increase in the number
of tagSNPs. Simultaneously, the success in predicting the
complementary SNP set declined, but the percentages
were still, with few exceptions, well over 80% in the
non-African samples. For the most stringent cutoff of
1.0—that is, with no loss of information on genetic var-
iation at all—between one- and two-thirds of all markers
were needed for tagging in the non-African samples, and
even more in the African ones. Prediction of comple-
mentary (i.e., unknown) SNPs further deteriorated and
ranged from ∼50%–85% in the non-African samples.
So, although we could reduce genotyping efforts by one-
to two-thirds for SNP samples of the given density in
these populations, we could not predict with certainty
15%–50% of the SNPs that lie in between the sample
SNPs. The situation was worse for the African samples.

Discussion

Recent work on haplotypes blocks demonstrated the
crucial influence that the population, sample SNP den-
sity, and sample size have on detected block patterns and
haplotypic structure. In the present work, we studied the
effect of marker selection on the detected block struc-
ture. To this end, we used high-density SNP data sets
that were complementary but otherwise nearly identical
with regard to covered sequence and marker distance.
We employed various methods for the definition of hap-
lotype blocks in a series of real data sets from different
genomic regions and populations to avoid any bias re-
sulting from a particular method, chromosomal region,
or population. We focused on the criterion of block-
covered sequence as the area for which information re-
duction is potentially feasible.

We were able to demonstrate that the choice of mark-
ers for an analysis can have a profound effect on the
pattern of haplotype blocks and haplotype frequencies
that we see in a particular region. Although large-scale
LD patterns were usually similar between interdigitated

SNP sets, haplotype patterns and LD fine structure was
not. Haplotype patterns are fragile and make sense only
in a fine-structure view. Regions of identical haplotype
patterns in the complementary SNP subsets do exist,
but they are not common and might break up if more
SNPs are considered. Depending on the marker set, we
might get different blocks or common haplotypes that
differ in frequency or even in number between subsets,
with unknown consequences for subsequent analysis
steps, such as association analysis or htSNP definition.
This holds true even for high SNP densities �2 kb.

The underlying reason for this complicated picture is
presumably the complex interplay of factors that shape
LD and whose magnitude is usually not known or not
very well known. This includes the different ages of
mutations; the potential differences in local recombi-
nation rates; the repeated population history events of
bottlenecks, migration, and genetic drift; selection; and
other factors. Extensive simulation studies to determine
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Table 4

TagSNPs and Prediction of SNPs in the Complementary Subset for the Four Populations

VALUE2r
AND REGION

CEU HCB JPT YRI

TagSNPs
(%)

SNPs Predicted
(%)

TagSNPs
(%)

SNPs Predicted
(%)

TagSNPs
(%)

SNPs Predicted
(%)

TagSNPs
(%)

SNPs Predicted
(%)

:2r � 0.5
ENm013 10.2 96.4 10.8 96.4 10.3 95.0 23.7 86.7
ENm014 13.2 94.8 13.7 96.0 12.8 92.4 27.2 84.5
ENr112 14.0 93.7 14.9 96.3 15.8 96.0 27.7 81.5
ENr113 12.1 91.1 8.0 96.4 7.7 97.3 31.4 84.7
ENr131 20.3 90.1 25.8 84.3 25.2 88.5 42.4 76.5
ENr213 15.8 96.0 15.1 97.7 15.5 93.2 37.0 78.9
ENr232 18.9 91.1 32.9 82.0 30.5 85.5 54.2 66.1
ENr321 16.8 94.0 19.2 93.7 18.6 92.5 40.1 82.0

:2r � 0.8
ENm013 21.1 86.5 23.9 91.1 26.0 89.3 43.2 76.9
ENm014 23.8 88.5 22.8 92.5 24.1 83.8 44.4 75.4
ENr112 27.9 86.1 24.7 90.8 29.4 89.5 53.8 64.7
ENr113 21.4 86.8 15.0 94.3 15.2 93.1 48.4 71.2
ENr131 33.9 86.4 42.5 77.7 41.4 77.5 61.0 60.4
ENr213 25.3 90.7 29.0 91.3 29.1 88.4 56.8 62.7
ENr232 31.5 85.8 49.7 70.6 49.8 70.7 73.0 52.4
ENr321 28.3 89.0 33.3 86.7 35.1 87.6 61.6 62.5

:2r p 1.0
ENm013 36.3 78.1 43.3 77.7 42.0 77.1 68.9 53.6
ENm014 36.6 79.6 38.3 79.3 45.9 74.8 64.2 58.0
ENr112 52.1 61.9 49.5 75.7 52.0 72.1 82.1 33.6
ENr113 42.3 70.8 27.6 87.4 27.3 86.5 66.7 53.8
ENr131 52.7 59.0 57.1 63.3 55.5 65.0 73.7 44.3
ENr213 43.7 75.1 47.8 74.8 47.5 74.3 75.9 41.4
ENr232 54.6 64.1 70.3 51.6 65.3 53.7 84.3 29.5
ENr321 51.1 70.9 58.4 66.7 56.4 68.0 79.3 41.9

NOTE.—The average percentage of tagSNPs in the two interdigitated subsets (50% level) of the ENCODE regions under investigation
and the average success in predicting the complementary subset are shown. The table lists the percentage of all SNPs in one subset that
were identified as tagSNPs with the use of different r2 cutoffs and the percentage of all SNPs in the complementary subset that they predict,
averaged over both subsets for each region and population. For example, in the CEU sample of region ENm013, 10.2% of all SNPs in
a subset are tagSNPs, and they predict 96.4% of the complementary SNPs with an accuracy of . Percentages of tagSNPs were2r � 0.5
persistently higher in the African samples, whereas the prediction of complementary SNPs was less successful, compared with the non-
African samples.

the shaping factors in each region and population—as
were done, for example, by Phillips et al. (2003)—
would be desirable but are beyond the scope of the
present study. Missing knowledge of the factors that
shaped LD in a particular region is the situation that a
“gene-hunting” researcher usually confronts. Only for
regions with high haplotypic similarity between SNP
subsets can we assume recent bottlenecks with absent
or very few successive recombination events or strong
selective pressure as likely sources. This is consistent
with the observations of a lower concordance with re-
gard to block coverage and block borders, lower per-
centages of identical frequency patterns in the SNP sub-
sets, and higher proportions of tagSNPs with lower
prediction success in the African samples. Our results
confirm previous reports of higher genomic variability
and a smaller average extent of LD in African popu-
lations than in other populations.

Our results raise the question of how useful and re-

liable the concept of haplotype blocks is. This concept
postulates that the essential variation at a block as a
chromosomal segment with limited diversity can be de-
scribed by the allelic combinations of some of its (com-
mon) SNPs. But the sample only provides information
on these SNPs; inference about the variation located in
between these SNPs is not reliably possible. The defi-
nition of haplotype blocks is “soft” in the sense that
one does not know what the underlying structure looks
like—the notion of haplotype blocks as delineating
regions of high LD is wrong because a single additional
SNP can destroy this pattern by splitting a “solid” block
into two parts. Haplotype structure is fragile; one can-
not predict the outcome for blocks and haplotype
patterns when additional SNPs or other SNPs than
those in the given sample are used. We see “patterns of
long segments of strong LD” (Hirschhorn and Daly
2005, p. 98) in the investigated ENCODE regions, but
“blocks” are dependent on—besides the population and
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the method used—the chosen SNP sample. So are the
underlying SNP haplotype structures. Consequently,
we need to question the aim of the HapMap project
to catalog the human haplotypic variation in discrete
blocks. As we and other authors have shown, blocks
are preliminary at any given SNP density. The term
“block” creates the illusion that a chromosomal region
can be segmented into clear disjointed blocks with re-
gard to recombination, LD, or some other feature,
which is true only in extraordinary cases.

Nevertheless, many SNPs in the investigated high-
density ENCODE regions were in high LD with each
other, and the haplotypes in the SNP subsets always
showed associations with one another. Block-free tag-
SNPs in one subset predicted SNPs in the complemen-
tary set remarkably well for intermediate r2 cutoffs, but
less so for complete LD. Thus, both the haplotype ap-
proach and the tagSNP approach, as means to condense
information on genetic variation, face the same prob-
lem: both approaches aim to limit the loss of infor-
mation and both cannot predict the effect of differing
SNP density and selection. Although additional SNPs
might create additional haplotypes and destroy the pic-
ture of an LD block, they can also lead to an increase
in the number of required tagSNPs. Both approaches
can only describe variation with a given marker selec-
tion. The tagSNP approach is more robust in the sense
that sets of existing tagSNPs are only expanded by ad-
ditional ones, with growing marker density, but it also
ignores simultaneous correlations between multiple
markers, as is inherent in a haplotype consideration. We
expect that information on additional SNPs will affect
LD maps (Zhang et al. 2002b) as well as recombination
maps, because of the underlying problem of missing
data on genomic variation. On the other hand, geno-
typing all genetic variation in a region would lead to a
complete and final picture of haplotypes and tagSNPs
without any more changes.

Condensing the information on variation in a ge-
nomic region is therefore a trade-off between the
accuracy of description—that is, how much loss of in-
formation is acceptable—and the genotyping efforts
needed to achieve this accuracy. Given the aim of the
HapMap project to provide a high-quality reference for
the common human haplotypic variation, a complete
genotyping of all genetic variation and a subsequent
condensation of this information appears to be the only
reliable way to achieve this aim; any map based on
noncomplete genotyping will be preliminary. For as-
sociation studies with single markers, a genomewide
tagSNP map with an r2 cutoff !1.0 will presumably
suffice.

At high SNP densities, a number of rare haplotypes
differed from a common, or major, haplotype by only
one or a few SNP alleles. For a description of the es-

sential variation in a particular area, one could consider
the use of clustering algorithms or the construction of
haplotypes from tagSNPs. Both approaches would pre-
sumably lead to a comparable result, but this needs
further investigation. The pattern of LD in a particular
region is often complex, and any description needs fur-
ther verification.

Acknowledgments

This work was supported by German National Genome Re-
search Network grant NGFN 01GR0463. We thank Nianjun
Liu for providing the source code for the calculation of the
block border concordance measure. We also thank two anon-
ymous reviewers for their thoughtful and extensive comments.

Web Resources

The URLs for data presented herein are as follows:
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supplements.htm (for results for and for other regions2r
and populations, as well as a description of the distances
between SNPs in the subsets and the distribution of their
less frequent alleles)

ENCODE, http://www.hapmap.org/genotypes/2004-12/
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